Why Piecewise Linear Functions Are Dense in C[0, 1]

BORIS SHEKHTMAN

Department of Mathematics, Kent State University, Kent, Ohio 44242, U.S.A.

Communicated by Richard S. Varga

Received June 2, 1980

In this article, we give a Stone-Weierstrass type of statement that answers the question mentioned in the title.

The difficulties which arise are due to the following two facts:

- 1. The set of piecewise linear functions does not have any multiplicative structure.
- 2. Instead of one subspace $X \subset C[0, 1]$, we usually deal with a sequence of subspaces $X_n \subset C[0, 1]$.

Let K be a compact metric space, and let C(K) denote the Banach space of all continuous real-valued functions on K. We identify the dual of C(K) with the Banach space of all regular Borel measures on K:

$$C(K)^* = \mathfrak{M}(K).$$

DEFINITION 1. Let X be a Banach space. A sequence of subspaces $X_n \subset X$ is said to be asymptotically dense in X if, for every $x \in X$, there exists an $x_n \in X_n$ for each n such that

$$x_n \xrightarrow{s} x$$
.

DEFINITION 2. A sequence of subspaces $x_n \subset C(K)$ is called a *separating* sequence if there exists a number M such that for each pair of closed disjoint subsets $F_1, F_2 \subset K$, there is a number $N := N(F_1, F_2)$ with the property that, for every n > N, there is an $x_n \in X_n$ with

$$x_n|_{F_2} = 0, x_n|_{F_2} = 1, ||x_n|| \le M.$$
 (1)

THEOREM 1. Let X be a separable Banach space, and let X_n be a 265

sequence of subspaces of X. The sequence X_n is asymptotically dense in X iff, for every infinite subset $\mathbb{N}' \subset \mathbb{N}$, the conditions

$$x_n^* \in X_n^\perp, \quad \|x_n^*\| \le 1 \quad (n \in \mathbb{N}')$$
 (2)

imply

$$x_n^* \xrightarrow{w^*} 0 \qquad (n \in \mathbb{N}'). \tag{3}$$

Proof. Let (2) imply (3), and let $x \in X$ be such that $\operatorname{dist}(x, X_n) \geqslant \varepsilon > 0$ for all n from some infinite subset $\mathbb{N}' \subset \mathbb{N}$. Then, by the Hahn-Banach Theorem, there are $x_n^* \in X_n^{\perp}$ such that

$$||x_n^*|| \leqslant \frac{1}{\varepsilon}, \qquad x_n^*(x) > 1,$$

which contradicts (3).

Conversely, let X_n be asymptotically dense in X, and let $x_n^* \in X_n^{\perp}$ satisfy (2). Without loss of generality, we may assume that $\mathbb{N}' = \mathbb{N}$. Then, there exists $\mathbb{N}_1 \subset \mathbb{N}$ such that

$$x_n^* \xrightarrow{w^*} x^* \qquad (n \in \mathbb{N}_1)$$

for some $x^* \in X^*$. We want to show that $x^* = 0$. Indeed, given $x \in X$, we can find $x_n \in X_n$ such that $x_n \to x$ Since $x_n^*(x_n) = 0$, we obtain

$$|x^*(x)| = \lim |x_n^*(x)| = \lim |x_n^*(x) - x_n^*(x_n)| \le \lim ||x_n - x|| = 0.$$

So, zero is a cluster point for x_n^* . The same consideration shows that it is the onlyc luster point for x_n^* , and thus $x_n^* \to^{w^*} 0$.

Remark. The separability of X was used only in the second part of the proof. Thus, the conditions of Theorem 1 are sufficient for any Banach space.

Next, we need the following

THEOREM 2 (cf. [1]). Let $\mu_n \in \mathfrak{M}(K)$ be a w^* -convergent sequence. Let C_k be an increasing sequence of closed sets such that $\bigcup C_k = K$. Then,

$$|\mu_n|(K\backslash C_k)\to 0$$
 as $K\to\infty$,

uniformly in n.

THEOREM 3. Let $X_n \subset C(K)$ be a separating sequence. Then, X_n is asymptotically dense in C(K).

Proof. We have to show that the conditions

$$\mu_n \in X_n^{\perp}, \qquad \|\mu_n\| \leqslant 1 \tag{4}$$

imply $\mu_n \to^{w^*} 0$. Since the μ_n are uniformly bounded, there exists an infinite subset $\mathbb{N}_1 \subset \mathbb{N}$ and a $\mu \in \mathfrak{M}(K)$ such that $\mu_n \to^{w^*} \mu$ $(n \in \mathbb{N}_1)$. We want to show that, for every compact $C \subset K$,

$$\mu(C)=0.$$

Let the closed sets $F_k \subset C^c := K \setminus C$ satisfy $\bigcup F_k = C^c$. Then for each k, there is a number N such that for all n > N, we can find an $x_n \in X$ with

$$||x_n|| \le M$$
, $x_n|_{F_k} = 0$ $x_n|_C = 1$.

Since $\mu_n \in X_n^{\perp}$, we obtain

$$0 = \int_K x_n d\mu_n = \mu_n(C) + \int_{C^c \setminus E_n} x_n d\mu_n.$$

Therefore,

$$|\mu_n(C)| \leqslant M |\mu_n| (C^c \backslash F_k).$$

On the other hand, let $C_k = C \cup F_k$. Then $C^c \setminus F_k = K \setminus C_k$ and by Theorem 2, $\mu_n(C) \to 0$.

Hence, zero is a cluster point for μ_n . The same considerations show that it is the only cluster point for μ_n , and consequently

$$\mu_n \xrightarrow{w} 0.$$

ACKNOWLEDGMENTS

The author wishes to express his gratitude to professor J. Diestel and Professor R. S. Varga for useful discussions and interest in this work.

REFERENCE

1. R. M. DUDLEY, Convergence of Baire measures, Studia Math. 27 (1966), 251-268.