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In this article, we give a Stone-Weierstrass type of statement that answers
the question mentioned in the title.

The difficulties which arise are due to the following two facts:

1. The set of piecewise linear functions does not have any multiplicative
structure.

2. Instead of one subspace Xc C[O, I]. we usually deal with a
sequence of subspaces X n c C[O, I].

Let K be a compact metric space. and let C(K) denote the Banach space
of all continuous real-valued functions on K. We identify the dual of C(K)
with the Banach space of all regular Borel measures on K:

C(K)* = 9Jl(K).

DEFINITION 1. Let X be a Banach space. A sequence of subspaces
X n c X is said to be asymptotically dense in X if, for every x E X, there
exists an x n E X n for each n such that

DEFINITION 2. A sequence of subspaces x n c C(K) is called a separating
sequence if there exists a number M such that for each pair of closed disjoint
subsets F I , F 2 C K, there is a number N:= N(FI • F 2 ) with the property that.
for every n > N. there is an X n E X n with

(I)

THEOREM 1. Let X be a separable Banach space, and let X n be a
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sequence of subspaces of X. The sequence X n is asymptotically dense in X iff,
for every infinite subset IN' c IN, the conditions

imply

(n E IN') (2)

(n E IN'). (3)

Proof Let (2) imply (3), and let x E X be such that dist(x, X n) ~ t; > 0
for all n from some infinite subset IN' c IN. Then, by the Hahn-Banach
Theorem, there are x: E X~ such that

x:(x) > 1,

which contradicts (3).
Conversely, let X n be asymptotically dense in X, and let x: E X; satisfy

(2). Without loss of generality, we may assume that IN' = IN. Then, there
exists IN 1 C IN such that

* w* *x n ---. X

for some x* E X*. We want to show that x* = O. Indeed, given x E X, we
can find x n E X n such that xn---+5 x. Since x:(xn ) = 0, we obtain

Ix*(x)1 = lim Ix:(x)1 = lim Ix:(x) - x:(xn)1 ~ lim Ilx n - xii = o.

So, zero is a cluster point for x:. The same consideration shows that it is the
onlyc luster point for x:, and thus x: ---+"" O. I

Remark. The separability of X was used only in the second part of the
proof. Thus, the conditions of Theorem 1 are sufficient for any Banach
space.

Next, we need the following

THEOREM 2 (cr. [1 D. Let P- n E ill'l(K) be a w*-convergent sequence. Let
Ck be an increasing sequence of closed sets such that U Ck = K. Then,

as K ---+ 00,

uniformly in n.

THEOREM 3. Let X n c C(K) be a separating sequence. Then, X n is
asymptotically dense in C(K).
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Proof We have to show that the conditions

267

(4 )

imply I1 n ~ w· O. Since the I1 n are uniformly bounded, there exists an infinite
subset IN I C IN and ailE m(K) such that Il n~w· 11 (n E IN I)' We want to
show that, for every compact C c K,

Il(C) = O.

Let the closed sets Fk c CC := K\C satisfy UFk = C. Then for each k, there
is a number N such that for all n >N, we can find an x n E X with

Since I1 n E X~, we obtain

0=1" Xndl1n=l1n(C) +I xndlln·
• K • CC \Fk

Therefore,

On the other hand, let Ck = CU Fk • Then C\Fk = K\Ck and by Theorem 2,
I1 n (C) ~ O.

Hence, zero is a cluster point for I1n • The same considerations show that it
is the only cluster point for I1 n , and consequently

Iln~O. I
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